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	 	 Introduction	
Sir	William	Osler’s	familiar	quote	“Medicine	is	a	science	of	
uncertainty	and	an	art	of	probability”	captures	well	the	
complex	nature	of	clinical	medicine.	Although	the	science	
of	medicine	is	often	taught	as	if	the	mechanisms	of	the	
human	body	operate	with	Newtonian	predictability,	every	
aspect	of	medical	practice	is	infused	with	an	element	of	
irreducible	uncertainty	that	the	clinician	ignores	at	her	
peril.	Clinical	medicine	has	deep	roots	in	science,	but	it	is	
an	imprecise	science.	More	than	100	years	after	the	
practice	of	medicine	took	its	modern	form,	it	remains	at	its	
core	a	craft,	to	which	individual	doctors	bring	varying	
levels	of	skill	and	understanding.	With	the	exponential	
growth	in	medical	literature	and	other	technical	
information	and	an	ever-increasing	number	of	testing	and	
treatment	options,	21st	century	physicians	who	seek	
excellence	in	their	craft	must	master	a	more	diverse	and	
complex	set	of	skills	than	any	of	the	generations	that	
preceded	them.	This	chapter	provides	an	introduction	to	
three	of	the	pillars	upon	which	the	craft	of	modern	
medicine	rests:	1)	expertise	in	clinical	reasoning	(what	it	is	
and	how	it	can	be	developed);	2)	rational	diagnostic	tests,	
use	and	interpretation;	and	3)	integration	of	the	best	
available	research	evidence	with	clinical	judgment	in	the	
care	of	individual	patients	(evidence-based	medicine	or	
EBM	and	the	tools	of	EBM).	
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Brief	Introduction	to	
Clinical	Reasoning	
Clinical	Expertise	
Defining	“clinical	expertise”	remains	surprisingly	difficult.	Chess	has	an	
objective	ranking	system	based	on	skill	and	performance	criteria.	
Athletics,	similarly,	have	ranking	systems	to	distinguish	novices	from	
Olympians.	But	in	medicine,	after	physicians	complete	training	and	pass	
the	boards	(or	get	recertified),	no	tests	or	benchmarks	are	used	to	
identify	those	who	have	attained	the	highest	levels	of	clinical	
performance.	Physicians	often	consult	a	few	“elite”	clinicians	for	their	
“special	problem-solving	prowess”	when	particularly	difficult	or	obscure	
cases	have	baffled	everyone	else.	Yet	despite	their	skill,	even	such	
master	clinicians	typically	cannot	explain	their	exact	processes	and	
methods,	thereby	limiting	the	acquisition	and	dissemination	of	the	
expertise	used	to	achieve	their	impressive	results.	Furthermore,	clinical	
virtuosity	appears	not	to	be	generalizable,	e.g.,	an	expert	on	
hypertrophic	cardiomyopathy	may	be	no	better	(and	possibly	worse)	
than	a	first-year	medical	resident	at	diagnosing	and	managing	a	patient	
with	neutropenia,	fever,	and	hypotension.	

Broadly	construed,	clinical	expertise	includes	not	only	cognitive	
dimensions	involving	the	integration	of	disease	knowledge	with	verbal	
and	visual	cues	and	test	interpretation	but	also	potentially	the	complex	
fine-motor	skills	necessary	for	invasive	procedures	and	tests.	In	
addition,	“the	complete	package”	of	expertise	in	medicine	requires	
effective	communication	and	care	coordination	with	patients	and	
members	of	the	medical	team.	Research	on	medical	expertise	remains	
sparse	overall	and	mostly	centered	on	diagnostic	reasoning,	so	in	this	
chapter,	we	focus	primarily	on	the	cognitive	elements	of	clinical	
reasoning.	

	 	 Because	clinical	reasoning	occurs	in	the	heads	of	clinicians,	objective	
study	of	the	process	is	difficult.	One	research	method	used	for	this	area	
asks	clinicians	to	“think	out	loud”	as	they	receive	increments	of	clinical	
information	in	a	manner	meant	to	simulate	a	clinical	encounter.	Another	
research	approach	focuses	on	how	doctors	should	reason	diagnostically	
to	identify	remediable	“errors”	rather	than	on	how	they	actually	do	
reason.	Much	of	what	is	known	about	clinical	reasoning	comes	from	
empirical	studies	of	nonmedical	problem-solving	behavior.	Because	of	
the	diverse	perspectives	contributing	to	this	area,	with	important	
contributions	from	cognitive	psychology,	medical	education,	behavioral	
economics,	sociology,	informatics,	and	decision	sciences,	no	single	
integrated	model	of	clinical	reasoning	exists,	and	not	infrequently,	
different	terms	and	reasoning	models	describe	similar	phenomena.	

Intuitive	Versus	Analytic	Reasoning	
A	useful	contemporary	model	of	reasoning,	dual-process	theory	
distinguishes	two	general	systems	of	cognitive	processes.	Intuition	
(System	1)	provides	rapid	effortless	judgments	from	memorized	
associations	using	pattern	recognition	and	other	simplifying	“rules	of	
thumb”	(i.e.,	heuristics).	For	example,	a	very	simple	pattern	that	could	be	
useful	in	certain	situations	is	“African-American	women	plus	hilar	
adenopathy	equals	sarcoid”.	Because	no	effort	is	involved	in	recalling	the	
pattern,	typically,	the	clinician	is	unable	to	say	how	those	judgments	
were	formulated.	In	contrast,	Analysis	(System	2),	the	other	form	of	
reasoning	in	the	dual-process	model,	is	slow,	methodical,	deliberative,	
and	effortful.	A	student	might	read	about	lymph	nodes	in	the	lung	and	
from	that	list,	identify	diseases	more	common	in	African-American	
women	or	examine	the	patient	for	skin	or	eye	findings	that	may	occur	
with	sarcoid.	These	dual	processes,	of	course,	represent	two	exemplars	
taken	from	the	cognitive	continuum.	They	provide	helpful	descriptive	
insights	but	very	little	guidance	in	how	to	develop	expertise	in	clinical	
reasoning.	How	these	idealized	systems	interact	in	different	decision	
problems,	how	experts	use	them	differently	from	novices,	and		
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when	their	use	can	lead	to	errors	in	judgment	remain	the	subject	of	
study	and	considerable	debate.	

Pattern	recognition,	an	important	part	of	System	1	reasoning,	is	a	
complex	cognitive	process	that	appears	largely	effortless.	One	can	
recognize	people’s	faces,	the	breed	of	a	dog,	an	automobile	model,	or	a	
piece	of	music	from	just	a	few	notes	within	milliseconds	without	
necessarily	being	able	to	articulate	the	specific	features	that	prompted	
the	recognition.	Analogously,	experienced	clinicians	often	recognize	
familiar	diagnosis	patterns	very	quickly.	The	key	here	is	having	a	large	
library	of	stored	patterns	that	can	be	rapidly	accessed.	In	the	absence	of	
an	extensive	stored	repertoire	of	diagnostic	patterns,	students	(as	well	
as	more	experienced	clinicians	operating	outside	their	area	of	expertise	
and	familiarity)	often	must	use	the	more	laborious	System	2	analytic	
approach	along	with	more	intensive	and	comprehensive	data	collection	
to	reach	the	diagnosis.	

The	following	three	brief	scenarios	of	a	patient	with	hemoptysis	
illustrate	three	distinct	patterns	that	experienced	clinicians	recognize	
without	effort:	

• A	46-year-old	man	presents	to	his	internist	with	a	chief	
complaint	of	hemoptysis.	An	otherwise	healthy,	nonsmoker,	he	
is	recovering	from	an	apparent	viral	bronchitis.	This	
presentation	pattern	suggests	that	the	small	amount	of	blood-
streaked	sputum	is	due	to	acute	bronchitis,	so	that	a	chest	x-ray	
provides	sufficient	reassurance	that	a	more	serious	disorder	is	
absent.		

• In	the	second	scenario,	a	46-year-old	patient	who	has	the	same	
chief	complaint	but	with	a	100-pack-year	smoking	history,	a	
productive	morning	cough,	with	blood-streaked	sputum,	and	
weight	loss	fits	the	pattern	of	carcinoma	of	the	lung.	
Consequently,	along	with	the	chest	x-ray,	the	clinician	obtains	a	
sputum	cytology	examination	and	refers	this	patient	for	a	chest	
CT	scan.	

 

	 	 • In	the	third	scenario,	the	clinician	hears	a	soft	diastolic	rumbling	
murmur	at	the	apex	on	cardiac	auscultation	in	a	46-year-old	
patient	with	hemoptysis	who	immigrated	from	a	developing	
country	and	orders	an	echocardiogram	as	well,	because	of	
possible	pulmonary	hypertension	from	suspected	rheumatic	
mitral	stenosis.	

Pattern	recognition	by	itself	is	not,	however,	sufficient	for	secure	
diagnosis.	Without	deliberative	systematic	reflection,	pattern	
recognition	can	result	in	premature	closure:	mistakenly	jumping	to	the	
conclusion	that	one	has	correct	diagnosis	before	all	the	relevant	data	are	
in.	A	critical	second	step,	even	when	the	diagnosis	seems	obvious,	is	
diagnostic	verification:	considering	whether	the	diagnosis	adequately	
accounts	for	the	presenting	symptoms	and	signs	and	can	explain	all	the	
ancillary	findings.	An	example	of	premature	closure	is	contained	in	the	
following	case,	modified	from	a	real	clinical	encounter.	A	45-year-old	
man	presents	with	a	3-week	history	of	a	“flulike”	upper	respiratory	
infection	(URI)	including	dyspnea	and	a	productive	cough.	The	
Emergency	Department	clinician	pulled	out	a	“URI	assessment	form”	
which	defines	and	standardizes	the	information	gathered.	After	quickly	
acquiring	the	requisite	structured	examination	components	and	noting	
in	particular	the	absence	of	fever	and	a	clear	chest	examination,	the	
physician	prescribed	a	cough	suppressant	for	acute	bronchitis	and	
reassured	the	patient	that	his	illness	was	not	serious.	Following	a	
sleepless	night	at	home	with	significant	dyspnea,	the	patient	developed	
nausea	and	vomiting	and	collapsed.	He	was	brought	back	to	the	
emergency	department	in	cardiac	arrest	and	was	unable	to	be	
resuscitated.	His	autopsy	showed	a	posterior	wall	myocardial	infarction	
and	a	fresh	thrombus	in	an	atherosclerotic	right	coronary	artery.	What	
went	wrong?	Presumably,		the	ED	clinician	felt	that	the	patient	was	
basically	healthy	(one	can	be	misled	by	the	way	the	patient	appears	on	
exam	–	a	patient	that	does	not	“appear	sick”	may	be	incorrectly	assumed	
to	have	an	innocuous	illness).	So	in	this	case,	the	physician,	upon	hearing	
the	overview	of	the	patient	from	the	triage	nurse,	elected	to	use	the	URI	
assessment	protocol	even	before	starting	the	history,	closing	
consideration	of	the	broader	range	of	possibilities	and	associated	tests	
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required	to	confirm	or	refute	these	possibilities.	In	particular,	by	
concentrating	on	the	abbreviated	and	focused	URI	protocol,	the	clinician	
failed	to	elicit	the	full	dyspnea	history,	which	was	precipitated	by	
exertion	and	accompanied	by	chest	heaviness	and	relieved	by	rest,	
suggesting	a	far	more	serious	disorder	

Heuristics	or	rules	of	thumb	are	a	part	of	the	intuitive	system.	These	
cognitive	shortcuts	provide	a	quick	and	easy	path	to	reaching	
conclusions	and	making	choices,	but	when	used	improperly	they	can	
lead	to	errors.	Two	major	research	programs	have	studied	heuristics	in	a	
mostly	non-medical	context	and	have	reached	very	different	conclusions	
about	the	value	of	these	cognitive	tools.	The	“heuristics	and	biases”	
program	focuses	on	how	relying	on	heuristics	can	lead	to	cognitive	
biases	and	incorrect	judgments.	Over	100	different	cognitive	biases	have	
been	described.	So	far,	however,	there	is	little	evidence	that	educating	
physicians	and	other	decision	makers	to	watch	for	these	cognitive	biases	
has	any	effect	on	the	rate	of	diagnostic	errors.	In	contrast,	the	“fast	and	
frugal	heuristics”	research	program	explores	how	and	when	relying	on	
simple	heuristics	can	produce	good	decisions.	Although	many	heuristics	
have	relevance	to	clinical	reasoning,	only	four	will	be	mentioned	here.	

When	diagnosing	patients,	clinicians	usually	develop	diagnostic	
hypotheses	based	on	the	similarity	of	that	patient’s	symptoms,	signs	and	
other	data	to	their	mental	representations	(memorized	patterns)	of	the	
disease	possibilities.	In	other	words,	clinicians	pattern	match	to	identify	
the	diagnoses	which	share	the	most	similar	findings	to	the	patient	at	
hand.	This	cognitive	shortcut	is	called	the	representativeness	heuristic.	
Consider	a	patient	with	hypertension	and	headache,	palpitations	and	
diaphoresis.	Based	on	the	representativeness	heuristic,	clinicians	might	
judge	pheochromocytoma	to	be	quite	likely	given	this	classic	presenting	
symptom	triad	suggesting	pheochromocytoma.	Doing	so	however,	
would	be	incorrect	given	that	other	causes	of	hypertension	are	much	
more	common	than	pheochromocytoma	and	this	triad	of	symptoms	can	
occur	in	patients	who	do	not	have	it.	Thus,	clinicians	using	the	
representativeness	heuristic	may	overestimate	the	likelihood	of	a	
particular	disease	based	on	its	representativeness	by	failing	to	recognize	

	

	 	 the	low	underlying	prevalence	(i.e.,	the	prior,	or	pretest,	probabilities).	
Conversely,	atypical	presentations	of	common	diseases	may	lead	to	
underestimating	the	likelihood	of	a	particular	disease.	Thus,	
inexperience	with	a	specific	disease	and	with	the	breadth	of	its	
presentations	may	also	lead	to	diagnostic	delays	or	errors,	e.g.,	diseases	
that	affect	multiple	organ	systems,	such	as	sarcoid	or	tuberculosis,	may	
be	particularly	challenging	to	diagnose	because	of	the	many	different	
patterns	they	may	manifest.	

A	second	commonly	used	cognitive	shortcut,	the	availability	heuristic,	
involves	judgments	based	on	how	easily	prior	similar	cases	or	outcomes	
can	be	brought	to	mind.	For	example,	a	clinician	may	recall	a	case	from	a	
morbidity	and	mortality	conference	in	which	an	elderly	patient	
presented	with	painless	dyspnea	of	acute	onset	and	was	evaluated	for	a	
pulmonary	cause	but	eventually	found	to	have	acute	MI	with	the	
diagnostic	delay	likely	contributing	to	the	development	of	ischemic	
cardiomyopathy.	If	the	case	was	associated	with	a	malpractice	
accusation,	such	examples	may	be	even	more	memorable.	Errors	with	
the	availability	heuristic	arise	from	several	sources	of	recall	bias.	Rare	
catastrophes	are	likely	to	be	remembered	with	a	clarity	and	force	
disproportionate	to	their	likelihood	for	future	diagnosis—for	example,	a	
patient	with	a	sore	throat	eventually	found	to	have	leukemia	or	a	young	
athlete	with	leg	pain	subsequently	found	to	have	a	sarcoma—and	those	
publicized	in	the	media	or	recent	experience	are,	of	course,	easier	to	
recall	and	therefore	more	influential	on	clinical	judgments.	

The	third	commonly	used	cognitive	shortcut,	the	anchoring	heuristic	
(also	called	conservatism	or	stickiness),	involves	insufficiently	adjusting	
the	initial	probability	of	disease	up	(or	down)	following	a	positive	(or	
negative	test)	when	compared	with	Bayes’	theorem,	i.e.,	sticking	to	the	
initial	diagnosis.	For	example,	a	clinician	may	still	judge	the	probability	
of	coronary	artery	disease	(CAD)	to	be	high	despite	a	negative	exercise	
perfusion	test	and	go	on	to	cardiac	catheterization	(see	“Measures	of	
Disease	Probability	and	Bayes’	Theorem,”	below).	
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The	fourth	heuristic	states	that	clinicians	should	use	the	simplest	
explanation	possible	that	will	adequately	account	for	the	patient’s	
symptoms	and	findings	(Occam’s	razor	or	alternatively	the	simplicity	
heuristic).	Although	this	is	an	attractive	and	often	used	principle,	it	is	
important	to	remember	that	no	biologic	basis	for	it	exists.	Errors	from	
the	simplicity	heuristic	include	premature	closure	leading	to	the	neglect	
of	unexplained	significant	symptoms	or	findings.	

For	complex	or	unfamiliar	diagnostic	problems,	clinicians	typically	
resort	to	analytic	reasoning	processes	(System	2)	and	proceed	
methodically	using	the	hypothetico-deductive	model	of	reasoning.	Based	
on	the	stated	reasons	for	seeking	medical	attention,	clinicians	develop	
an	initial	list	of	diagnostic	possibilities	in	hypothesis	generation.	During	
the	history	of	the	present	illness,	the	initial	hypotheses	evolve	in	
diagnostic	refinement	as	emerging	information	is	tested	against	the	
mental	models	of	the	diseases	being	considered	with	diagnoses	
increasing	and	decreasing	in	likelihood	or	even	being	dropped	from	
consideration	as	the	working	hypotheses	of	the	moment.	These	mental	
models	often	generate	additional	questions	that	distinguish	the	
diagnostic	possibilities	from	one	another.	The	focused	physical	
examination	contributes	further	distinguishing	the	working	hypotheses.	
Is	the	spleen	enlarged?	How	big	is	the	liver?	Is	it	tender?	Are	there	any	
palpable	masses	or	nodules?	Diagnostic	verification	involves	testing	the	
adequacy	(whether	the	diagnosis	accounts	for	all	symptoms	and	signs)	
and	coherency	(whether	the	signs	and	symptoms	are	consistent	with	the	
underlying	pathophysiological	causal	mechanism)	of	the	diagnosis.	For	
example,	if	the	enlarged	and	quite	tender	liver	felt	on	physical	
examination	is	due	to	acute	hepatitis	(the	hypothesis),	then	certain	
specific	liver	function	tests	will	be	markedly	elevated	(the	prediction).	
Should	the	tests	come	back	normal,	the	hypothesis	may	have	to	be	
discarded	or	substantially	modified.		

Although	often	neglected,	negative	findings	are	as	important	as	positive	
ones	because	they	reduce	the	likelihood	of	the	diagnostic	hypotheses		

	 	 under	consideration.	Chest	discomfort	that	is	not	provoked	or	worsened	
by	exertion	and	not	relieved	by	rest	in	an	active	patient	reduces	the	
likelihood	that	chronic	ischemic	heart	disease	is	the	underlying	cause.	
The	absence	of	a	resting	tachycardia	and	thyroid	gland	enlargement	
reduces	the	likelihood	of	hyperthyroidism	in	a	patient	with	paroxysmal	
atrial	fibrillation.	

The	acuity	of	a	patient’s	illness	may	override	considerations	of	
prevalence	and	the	other	issues	described	above.	“Diagnostic	
imperatives”	recognize	the	significance	of	relatively	rare	but	potentially	
catastrophic	diagnoses	if	undiagnosed	and	untreated.	For	example,	
clinicians	should	consider	aortic	dissection	routinely	as	a	possible	cause	
of	acute	severe	chest	discomfort.	Although	the	typical	presenting	
symptoms	of	dissection	differ	from	that	of	MI,	dissection	may	mimic	MI,	
and	because	it	is	far	less	prevalent	and	potentially	fatal	if	mistreated,	
diagnosing	dissection	remains	a	challenging	diagnostic	imperative.	
Clinicians	taking	care	of	acute,	severe	chest	pain	patients	should	
explicitly	and	routinely	inquire	about	symptoms	suggestive	of	
dissection,	measure	blood	pressures	in	both	arms	for	discrepancies	and	
examine	for	pulse	deficits.	When	these	are	all	negative,	clinicians	may	
feel	sufficiently	reassured	to	discard	the	aortic	dissection	hypothesis.	If,	
however,	the	chest	x-ray	shows	a	possible	widened	mediastinum,	the	
hypothesis	should	be	reinstated	and	an	appropriate	imaging	test	
ordered	[e.g.,	thoracic	computed	tomography	(CT)	scan	or	
transesophageal	echocardiogram].	In	non-acute	situations,	the	
prevalence	of	potential	alternative	diagnoses	should	play	a	much	more	
prominent	role	in	diagnostic	hypothesis	generation.		

Cognitive	scientists	studying	the	thought	processes	of	expert	clinicians	
have	observed	that	clinicians	group	data	into	packets,	or	“chunks,”	that	
are	stored	in	short-term	or	“working	memory”	and	manipulated	to	
generate	diagnostic	hypotheses.	Because	short-term	memory	is	limited	
(classically	humans	can	accurately	repeat	a	list	of	7±2	numbers	read	to	
them),	the	number	of	diagnoses	that	can	be	actively	considered	in		
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hypothesis-generating	activities	is	similarly	limited.	For	this	reason,	
cognitive	shortcuts	discussed	above	play	a	key	role	in	the	generation	of	
diagnostic	hypotheses,	many	of	which	are	discarded	as	rapidly	as	they	
are	formed,	thereby	demonstrating	that	the	distinction	between	analytic	
and	intuitive	reasoning	is	an	arbitrary	and	simplistic,	but	nonetheless	
useful,	representation	of	cognition.		

Research	into	the	hypothetico-deductive	model	of	reasoning	has	had	
difficulty	identifying	the	elements	of	the	reasoning	process	that	
distinguish	experts	from	novices.	This	has	led	to	a	shift	from	examining	
the	problem-solving	process	of	experts	to	analyzing	the	organization	of	
their	knowledge	for	pattern	matching	as	exemplars,	prototypes	and	
illness	scripts.	For	example,	diagnosis	may	be	based	on	the	resemblance	
of	a	new	case	to	patients	seen	previously	(exemplars).	As	abstract	
mental	models	of	disease,	prototypes	incorporate	the	likelihood	of	
various	disease	features.	Illness	scripts	include	risk	factors,	
pathophysiology,	and	symptoms	and	signs.	Experts	have	a	much	larger	
store	of	exemplar	and	prototype	cases,	an	example	of	which	is	the	visual	
long-term	memory	of	experienced	radiologists.	However,	clinicians	do	
not	simply	rely	on	literal	recall	of	specific	cases	but	have	constructed	
elaborate	conceptual	networks	of	memorized	information	or	models	of	
disease	to	aid	in	arriving	at	their	conclusions	(illness	scripts).	That	is,	
expertise	involves	an	enhanced	ability	to	connect	symptoms,	signs,	and	
risk	factors	to	one	another	in	meaningful	ways;	relate	those	findings	to	
possible	diagnoses;	and	identify	the	additional	information	necessary	to	
confirm	the	diagnosis.	

No	single	theory	accounts	for	all	the	key	features	of	expertise	in	medical	
diagnosis.	Experts	have	more	knowledge	about	presenting	symptoms	of	
diseases	and	a	larger	repertoire	of	cognitive	tools	to	employ	in	problem	
solving	than	non-experts.	One	definition	of	expertise	highlights	the	
ability	to	make	powerful	distinctions.	In	this	sense,	expertise	involves	a	
working	knowledge	of	the	diagnostic	possibilities	and	those	features	
that	distinguish	one	disease	from	another.	

	

	 	 Memorization	alone	is	insufficient,	e.g.,	photographic	memory	of	a	
medical	textbook	would	not	make	one	an	expert.	But	having	access	to	
detailed	case-specific	relevant	information	is	critically	important.	In	the	
past,	clinicians	primarily	acquired	clinical	knowledge	through	their	
patient	experiences,	but	now	clinicians	have	access	to	a	plethora	of	
information	sources	(see	evidence-based	medicine	(EBM)	below).	
Clinicians	of	the	future	will	be	able	to	leverage	the	experiences	of	large	
numbers	of	other	clinicians	using	electronic	tools,	but,	as	with	the	
memorized	textbook,	the	data	alone	will	be	insufficient	for	becoming	an	
expert.		Nonetheless,	availability	of	these	data	removes	one	barrier	for	
acquiring	experience	with	connecting	symptoms,	signs,	and	risk	factors	
to	the	possible	diagnoses	and	identifying	the	additional	distinguishing	
information	necessary	to	confirm	the	diagnosis,	thereby	potentially	
facilitating	the	development	of	the	working	knowledge	necessary	for	
becoming	an	expert.	

Despite	all	of	the	research	seeking	to	understand	expertise	in	medicine	
and	other	disciplines,	it	remains	uncertain	whether	any	didactic	
program	can	actually	accelerate	the	progression	from	novice	to	expert	
or	from	experienced	clinician	to	master	clinician.	Deliberate	effortful	
practice	(over	an	extended	period	of	time,	sometimes	said	to	be	10	years	
or	10,000	practice	hours)	and	personal	coaching	are	two	strategies	that	
are	often	used	outside	medicine	(e.g.,	music,	athletics,	chess)	to	promote	
expertise.	Their	use	in	developing	medical	expertise	and	maintaining	or	
enhancing	it	has	not	yet	been	adequately	explored.	Some	studies	in	
medicine	suggest	that	didactic	education	exposing	students	to	both	the	
signs	and	symptoms	of	specific	diseases	and,	in	addition,	the	diseases	
that	may	present	with	specific	symptoms	and	signs	may	be	beneficial.	
Developing	a	personal	learning	system	(e.g.,	metacognition)	through	for	
example	EBM	processes	below	and	follow-up	to	identify	diagnoses	and	
treatments	for	patients	that	you	have	cared	for	provide	active	learning	
opportunities.	
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Diagnostic	Versus	Therapeutic	Decision	Making	
The	modern	ideal	of	medical	therapeutic	decision	making	is	to	
“personalize”	treatment	recommendations.	In	the	abstract,	personalizing	
treatment	involves	combining	the	best	available	evidence	about	what	
works	with	an	individual	patient’s	unique	features	(e.g.,	risk	factors,	
genomics	and	co-morbidities)	and	his	or	her	preferences	and	health	
goals	to	craft	an	optimal	treatment	recommendation	with	the	patient.	
Operationally,	two	different	and	complementary	levels	of	
personalization	are	possible:	individualizing	the	risk	of	harm	and	benefit	
for	the	options	being	considered	based	on	the	specific	patient	
characteristics	(precision	medicine),	and	personalizing	the	therapeutic	
decision	process	by	incorporating	the	patient’s	preferences	and	values	
for	the	possible	health	outcomes.	This	latter	process	is	sometimes	
referred	to	as	shared	decision-making,	and	typically	involves	clinicians	
sharing	their	knowledge	about	the	options	and	the	associated	
consequences	and	tradeoffs,	and	patients	sharing	their	health	goals,	e.g.,	
avoiding	a	short-term	risk	of	dying	from	coronary	artery	bypass	grafting	
to	see	their	grandchild	get	married	in	a	few	months.		

Individualizing	the	evidence	about	therapy	does	not	mean	relying	on	
physician	impressions	of	benefit	and	harm	from	their	personal	
experience.	Because	of	small	sample	sizes	and	rare	events,	the	chance	of	
drawing	erroneous	causal	inferences	from	one’s	own	clinical	experience	
is	very	high.	For	most	chronic	diseases,	therapeutic	effectiveness	is	only	
demonstrable	statistically	in	large	patient	populations.	It	would	be	
incorrect	to	infer	with	any	certainty,	for	example,	that	treating	a	
hypertensive	patient	with	angiotensin-converting	enzyme	(ACE)	
inhibitors	necessarily	prevented	a	stroke	from	occurring	during	
treatment,	or	that	an	untreated	patient	would	definitely	have	avoided	
their	stroke	had	they	been	treated.	For	many	chronic	diseases,	a	
majority	of	patients	will	remain	event	free	regardless	of	treatment	
choices;	some	will	have	events	regardless	of	which	treatment	is	selected;	
and	those	who	avoided	having	an	event	through	treatment	cannot	be		

	 	 individually	identified.	Blood	pressure	lowering,	a	readily	observable	
surrogate	endpoint,	does	not	have	a	tightly	coupled	relationship	with	
strokes	prevented.	Consequently,	in	most	situations	demonstrating	
therapeutic	effectiveness	cannot	rely	simply	on	observing	the	outcome	
of	an	individual	patient	but	should	instead	be	based	on	large	groups	of	
patients	carefully	studied	and	properly	analyzed.		

Therapeutic	decision	making,	therefore,	should	be	based	on	the	best	
available	evidence	from	clinical	trials	and	well	done	outcome	studies.	
Trustworthy	clinical	practice	guidelines	that	synthesize	such	evidence	
offer	normative	guidance	for	many	testing	and	treatment	decisions.	
However,	all	guidelines	recognize	that	“one	size	fits	all”	
recommendations	may	not	apply	to	individual	patients.	Increased	
research	into	the	heterogeneity	of	treatment	effects	seeks	to	understand	
how	best	to	adjust	group	level	clinical	evidence	of	treatment	harms	and	
benefits	to	account	for	the	absolute	level	of	risks	faced	by	subgroups	and	
even	by	individual	patients,	using,	for	example,	validated	clinical	risk	
scores.		

Non-Clinical	Influences	on	Clinical	Decision-
Making	
More	than	three	decades	of	research	on	variations	in	clinician	practice	
patterns	has	identified	important	non-clinical	forces	that	shape	clinical	
decisions.	These	factors	can	be	grouped	conceptually	into	three	
overlapping	categories:	(1)	factors	related	to	individual	physicians	
practice,	(2)	factors	related	to	practice	setting,	and	(3)	factors	related	to	
payment	systems.	

Factors	related	to	practice	style	
To	ensure	that	necessary	care	is	provided	at	a	high	level	of	quality,	
physicians	fulfill	a	key	role	in	medical	care	by	serving	as	the	patient’s		
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advocate.	Factors	that	influence	performance	in	this	role	include	the	
physician’s	knowledge,	training,	and	experience.	Clearly,	physicians	
cannot	practice	evidence-based	medicine	(described	below)	if	they	are	
unfamiliar	with	the	evidence.	As	would	be	expected,	specialists	generally	
know	the	evidence	in	their	field	better	than	do	generalists.	Beyond	
published	evidence	and	practice	guidelines,	a	major	set	of	influences	on	
physician	practice	can	be	subsumed	under	the	general	concept	of	
“practice	style.”	The	practice	style	serves	to	define	norms	of	clinical	
behavior.	Beliefs	about	effectiveness	of	different	therapies	and	preferred	
patterns	of	diagnostic	test	use	are	examples	of	different	facets	of	a	
practice	style.	The	physician	beliefs	that	drive	these	different	practice	
styles	may	be	based	on	training,	personal	experience,	and	medical	
evidence.	For	example,	in	heart	failure	patients,	heart	failure	specialists	
have	more	familiarity	than	general	internists	with	the	target	doses	of	
angiotensin-converting	enzyme	(ACE)	inhibitor	therapy	as	defined	by	
large	clinical	trials	and	the	specific	drugs	(including	adverse	effects),	and	
are	less	likely	to	overreact	to	foreseeable	problems	in	therapy	such	as	a	
rise	in	creatinine	levels	or	asymptomatic	hypotension.	Not	surprisingly,	
the	specialists	are	much	more	likely	than	generalists	to	achieve	target	
doses	of	ACE	inhibitor	therapy.	By	contrast,	perhaps	due	to	
specialization,	cardiologists	may	overestimate	the	benefit	and	
underestimate	the	harm	of	coronary	revascularization	relative	to	
general	internists.	

Beyond	the	patient’s	welfare,	physician	perceptions	about	the	risk	of	a	
malpractice	suit	resulting	from	either	an	erroneous	decision	or	a	bad	
outcome	may	drive	clinical	decisions	and	create	a	practice	referred	to	as	
defensive	medicine.	This	practice	involves	using	tests	and	therapies	with	
very	small	marginal	benefits,	ostensibly	to	preclude	future	criticism	
should	an	adverse	outcome	occur.	With	conscious	or	unconscious	
awareness	of	a	connection	to	the	risk	of	litigation	or	to	payment,	
however,	over	time	such	patterns	of	care	may	become	accepted	as	part	
of	the	practice	norm,	thereby	perpetuating	their	overuse,	e.g.	annual	
cardiac	exercise	testing	in	asymptomatic	patients.	

	 	

Practice	setting	factors	
Factors	in	this	category	relate	to	work	systems	including	tasks	and	work	
flow	(interruptions,	inefficiencies,	workload),	technology	(poor	design	
or	implementation,	errors	in	use,	failure,	misuse),	organizational	
characteristics	(e.g.,	culture,	leadership,	staffing,	scheduling),	and	the	
physical	environment	(e.g.,	noise,	lighting,	layout).	Physician-induced	
demand	is	a	term	that	refers	to	the	repeated	observation	that	once	
medical	facilities	and	technologies	become	available	to	physicians,	they	
will	use	them.	Other	environmental	factors	that	can	influence	decision-
making	include	the	local	availability	of	specialists	for	consultations	and	
procedures;	“high-tech”	advanced	imaging	or	procedure	facilities	such	as	
MRI	machines	and	proton	beam	therapy	centers;	and	fragmentation	of	
care.	

Payment	systems	
Economic	incentives	are	closely	related	to	the	other	two	categories	of	
practice-modifying	factors.	Financial	issues	can	exert	both	stimulatory	
and	inhibitory	influences	on	clinical	practice.	Historically,	physicians	are	
paid	on	a	fee-for-service,	capitation,	or	salary	basis.	In	fee-for-service,	
physicians	who	do	more	get	paid	more,	thereby	encouraging	overuse,	
consciously	or	unconsciously.	When	fees	are	reduced	(discounted	
reimbursement),	clinicians	tend	to	increase	the	number	of	services	
provided	to	maintain	revenue.	Capitation,	in	contrast,	provides	a	fixed	
payment	per	patient	per	year	to	encourage	physicians	to	consider	a	
global	population	budget	in	managing	individual	patients	and	ideally	
reducing	the	use	of	interventions	with	small	marginal	benefit.	To	
discourage	volume-based	excessive	utilization,	fixed	salary	
compensation	plans	pay	physicians	the	same	regardless	of	the	clinical	
effort	expended,	but	may	provide	an	incentive	to	see	fewer	patients.	In		
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recognition	of	the	non-sustainability	of	continued	growth	in	medical	
expenditures	and	the	opportunity	costs	associated	with	that	(funds	that	
might	be	more	beneficially	applied	to	education,	energy,	social	welfare	
or	defense),	current	efforts	seek	to	transition	to	a	value-based	payment	
system	to	reduce	overuse	and	to	reflect	benefit.	Work	to	define	how	to	
actually	tie	payment	to	value	has	mostly	focused	so	far	on	“pay	for	
performance”	models.	High	quality	clinical	trial	evidence	for	the	
effectiveness	of	these	models	is	still	mostly	lacking.	

Interpretation	of	Diagnostic	Tests		
Despite	impressive	technological	advances	in	medicine	over	the	last	
century,	uncertainty	still	abounds	and	challenges	all	aspects	of	medical	
decision-making.	Compounding	this	challenge,	massive	information	
overload	characterizes	modern	medicine.	Clinicians	on	average	
subscribe	to	seven	journals,	presenting	them	with	over	2500	new	
articles	each	year,	and	need	access	to	2	million	pieces	of	information	to	
practice	medicine.	Of	course,	to	be	useful,	this	information	must	be	sifted	
for	quality	and	examined	for	applicability	for	integration	into	patient-
specific	care.	Although	computers	appear	to	offer	an	obvious	solution	
both	for	information	management	and	for	quantification	of	medical	care	
uncertainties,	many	practical	problems	must	be	solved	before	
computerized	decision	support	can	be	routinely	incorporated	into	the	
clinical	reasoning	process	in	a	way	that	demonstrably	improves	the	
quality	of	care.	For	the	present,	understanding	the	nature	of	diagnostic	
test	information	can	help	clinicians	become	more	efficient	users	of	such	
data.	The	next	section	reviews	concepts	related	to	diagnostic	testing.	

Diagnostic	Testing:	Measures	of	Test	Accuracy	
The	purpose	of	performing	a	test	on	a	patient	is	to	reduce	uncertainty	
about	the	patient’s	diagnosis	or	prognosis	in	order	to	facilitate	
appropriate	management.	Although	diagnostic	tests	commonly	refer	to	
laboratory	(e.g.,	blood	count)	or	imaging	tests	or	procedures	(e.g.,	
colonoscopy	or	bronchoscopy),	any	information	that	changes	a	

	 	 provider’s	understanding	of	the	patient’s	problem	qualifies	as	a	
diagnostic	test.	Thus,	even	the	history	and	physical	examination	should	
be	considered	as	diagnostic	tests.	In	clinical	medicine,	it	is	common	to	
reduce	the	results	of	a	test	to	a	dichotomous	outcome,	such	as	positive	
or	negative,	normal	or	abnormal.	Although	this	simplification	ignores	
useful	information	(such	as	the	degree	of	abnormality),	it	facilitates	
illustrating	some	important	principles	of	test	interpretation	which	are	
described	below.	

The	accuracy	of	any	diagnostic	test	is	assessed	relative	to	a	“gold	
standard,”	where	a	positive	gold	standard	test	defines	the	patients	who	
have	disease	and	a	negative	test	rules	out	disease	(Table	3-1).		
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Characterizing	the	diagnostic	performance	of	a	new	test	requires	
identifying	an	appropriate	population	(ideally,	patients	representative	of	
those	in	whom	the	new	test	would	be	used)	and	applying	both	the	new	
and	the	gold	standard	tests	to	all	subjects.	Biased	estimates	of	test	
performance	occur	when	diagnostic	accuracy	is	defined	using	an	
inappropriate	population	or	one	in	which	gold	standard	determination	
of	disease	status	is	incomplete.	The	accuracy	of	the	new	test	in	
distinguishing	disease	from	health	is	determined	relative	to	the	gold	
standard	results	and	summarized	in	4	estimates.	The	sensitivity	or	true-
positive	rate	of	the	new	test	reflects	how	well	the	new	test	identifies	
patients	with	disease.	It	is	the	proportion	of	patients	with	disease	
(defined	by	the	gold	standard)	who	have	a	positive	test.	The	proportion	
of	patients	with	disease	who	have	a	negative	test	is	the	false-negative	
rate,	calculated	as	1	–	sensitivity.	The	specificity,	or	true-negative	rate	
reflects	how	well	the	new	test	correctly	identifies	patients	without	
disease.	It	is	the	proportion	of	patients	without	disease	(defined	by	the	
gold	standard)	who	have	a	negative	test.	The	proportion	of	patients	
without	disease	who	have	positive	test	is	the	false-positive	rate,	
calculated	as	1	–	specificity.	In	theory,	a	perfect	test	would	be	one	with	a	
sensitivity	of	100%	and	a	specificity	of	100%	and	would	completely	
distinguish	patients	with	disease	from	those	without	it.	A	useful	
mnemonic	is	the	following:	a	negative	high	sensitivity	(Sn)	test	helps	rule	
out	disease	(Negative	SnOut),	and	a	positive	high	specificity	(Sp)	test	
helps	rule	in	disease	(Positive	SpIn).	

Calculating	sensitivity	and	specificity	requires	selection	of	a	threshold	
value	or	cut	point	above	which	the	test	is	considered	“positive.”	Making	
the	cut	point	“stricter”	(e.g.,	raising	it),	lowers	sensitivity	but	improves	
specificity,	while	making	it	“laxer”	(e.g.,	lowering	it)	raises	sensitivity	but	
lowers	specificity.	This	dynamic	trade-off	between	more	accurate	
identification	of	subjects	with	disease	versus	those	without	disease	is	
often	displayed	graphically	as	a	receiver	operating	characteristic	(ROC)	
curve	(Fig.	3-1)	by	plotting	sensitivity	(y	axis)	versus	1	–	specificity	(x	
axis).	Each	point	on	the	curve	represents	a	potential	cut	point	with	an	
associated	sensitivity	and	specificity	value.	The	area	under	the	ROC	
curve	often	is	used	as	a	quantitative	measure	of	the	information	content		

	 	 of	a	test.	Values	range	from	0.5	(no	diagnostic	information	from	testing	
at	all;	the	test	is	equivalent	to	flipping	a	coin)	to	1.0	(perfect	test).	The	
choice	of	cut	point	should	in	theory	reflect	the	relative	harms	and	
benefits	of	treatment	for	those	without	versus	those	with	disease.	For	
example,	if	treatment	was	safe	with	substantial	benefit,	then	choosing	a		

	

Figure	3-1	Each	ROC	curve	illustrates	a	trade-off	that	occurs	between	improved	test	
sensitivity	(accurate	detection	of	patients	with	disease)	and	improved	test	specificity	
(accurate	detection	of	patients	without	disease),	as	the	test	value	defining	when	the	test	
turns	from	“negative”	to	“positive”	is	varied.	A	45°	line	would	indicate	a	test	with	no	
predictive	value	(sensitivity	=	specificity	at	every	test	value).	The	area	under	each	ROC	
curve	is	a	measure	of	the	information	content	of	the	test.	Thus,	a	larger	ROC	area	signifies	
increased	diagnostic	accuracy.	
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high	sensitivity	cut	point	(upper	right	of	the	ROC	curve)	for	a	low	risk	
test	may	be	appropriate	(e.g,	phenylketonuria	in	newborns),	but	if	
treatment	had	substantial	risk	for	harm,	then	choosing	a	high	specificity	
cut	point	(lower	left	of	the	ROC	curve)	may	be	appropriate	(e.g.,	
chemotherapy	for	cancer).	The	choice	of	cut	point	may	also	depend	on	
the	likelihood	of	disease	with	low	likelihoods	placing	a	greater	emphasis	
on	the	harms	of	false	positive	tests	(e.g.,	HIV	testing	in	marriage	
applicants)	or	the	harms	of	false	negative	tests	(e.g.,	HIV	testing	in	blood	
donors).	

Measures	of	Disease	Probability	and	Bayes’	Rule	
In	the	absence	of	perfect	tests,	the	true	disease	state	of	the	patient	
remains	uncertain	after	every	test.	Bayes’	rule	provides	a	way	to	
quantify	the	revised	uncertainty	using	simple	probability	mathematics	
(and	thereby	avoid	anchoring	bias).	It	calculates	the	posttest	probability	
or	likelihood	of	disease	after	a	test	result,	from	three	parameters:	the	
pretest	probability	of	disease,	the	test	sensitivity,	and	the	test	specificity.	
The	pretest	probability	is	a	quantitative	estimate	of	the	likelihood	of	the	
diagnosis	before	the	test	is	performed	and	is	usually	estimated	from	the	
prevalence	of	the	disease	in	the	underlying	population	(if	known)	or	
clinical	context	(e.g.,	age,	sex	and	type	of	chest	pain).	For	some	common	
conditions,	such	as	CAD,	existing	nomograms	and	statistical	models	
generate	estimates	of	pretest	probability	that	account	for	history,	
physical	examination	and	test	findings.	The	posttest	probability	(also	
called	the	predictive	value	of	the	test,	see	below)	is	a	recalibrated	
statement	of	the	likelihood	of	the	diagnosis,	accounting	for	both	
pretestprobability	and	test	results.	For	the	likelihood	of	disease	
following	a	positive	test	(i.e.,	positive	predictive	value),	Bayes’	rule	is	
calculated	as:

Pretest probability test sensitivityPosttest probability
Pretest probability test sensitivity

(1 Pretest probability) test
false-positive rate

´
=

´ +
- ´

		

For	example,	consider	a	64-year-old	woman	with	atypical	chest	pain		

	 	 who	has	a	pretest	probability	of	0.50	and	“positive”	diagnostic	test	result	
(assuming	test	sensitivity	=	0.90	and	specificity	=	0.90).	

(0.50)(0.90)Posttest probability = 
(0.50)(0.90) (0.50)(0.10)

0.90
+

=

	

The	term	predictive	value	has	often	been	used	as	a	synonym	for	the	
posttest	probability.	Unfortunately,	clinicians	commonly	misinterpret	
reported	predictive	values	as	intrinsic	measures	of	test	accuracy	rather	
than	calculated	probabilities.	Studies	of	diagnostic	test	performance	
compound	the	confusion	by	calculating	predictive	values	from	the	same	
sample	used	to	measure	sensitivity	and	specificity.	Such	calculations	are	
misleading	unless	the	test	is	applied	subsequently	to	populations	with	
exactly	the	same	disease	prevalence.	For	these	reasons,	the	term	
predictive	value	is	best	avoided	in	favor	of	the	more	descriptive	posttest	
probability	following	a	positive	or	a	negative	test	result.	The	nomogram	
version	of	Bayes’	rule	(Fig.	3-2)	helps	us	to	understand	at	a	conceptual	
level	how	it	estimates	the	posttest	probability	of	disease.	In	this	
nomogram,	the	impact	of	the	diagnostic	test	result	is	summarized	by	the	
likelihood	ratio,	which	is	defined	as	the	ratio	of	the	probability	of	a	given	
test	result	(e.g.,	“positive”	or	“negative”)	in	a	patient	with	disease	to	the	
probability	of	that	result	in	a	patient	without	disease,	thereby	providing	
a	measure	of	how	well	the	test	distinguishes	those	with	from	those	
without	disease.	

The	likelihood	ratio	for	a	positive	test	is	calculated	as	the	ratio	of	the	
true-positive	rate	to	the	false-positive	rate	[or	sensitivity/(1	–	
specificity)].	For	example,	a	test	with	a	sensitivity	of	0.90	and	a	
specificity	of	0.90	has	a	likelihood	ratio	of	0.90/(1	–	0.90),	or	9.	Thus,	for	
this	hypothetical	test,	a	“positive”	result	is	9	times	more	likely	in	a	
patient	with	the	disease	than	in	a	patient	without	it.	Most	tests	in	
medicine	have	likelihood	ratios	for	a	positive	result	between	1.5	and	20.	
Higher	values	are	associated	with	tests	that	more	substantially	increase	
the	posttest	likelihood	of	disease.	A	very	high	likelihood	ratio	positive	
(exceeding	10)	usually	implies	high	specificity,	so	a	positive	high		
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Figure	3-2:	Nomogram	version	of	Bayes’	theorem	used	to	predict	the	posttest	probability	
of	disease	(right-hand	scale)	using	the	pretest	probability	of	disease	(left-hand	scale)	and	
the	likelihood	ratio	for	a	positive	test	(middle	scale).	See	text	for	information	on	calculation	
of	likelihood	ratios.	To	use,	place	a	straightedge	connecting	the	pretest	probability	and	the	
likelihood	ratio	and	read	off	the	posttest	probability.	The	right-hand	part	of	the	figure	
illustrates	the	value	of	a	positive	exercise	treadmill	test	(likelihood	ratio	4,	green	line)	and	
a	positive	exercise	thallium	single-photon	emission	CT	perfusion	study	(likelihood	ratio	9,	
broken	yellow	line)	in	a	patient	with	a	pretest	probability	of	coronary	artery	disease	of	
50%.	(Adapted	from	Centre	for	Evidence-Based	Medicine:	Likelihood	ratios.	Available	at	
http://www.cebm.net/likelihood-ratios/).	

	

	 	 specificity	test	helps	“rule	in”	disease.	If	sensitivity	is	excellent	but	
specificity	is	less	so,	the	likelihood	ratio	will	be	reduced	substantially	
(e.g.,	with	a	90%	sensitivity	but	a	55%	specificity,	the	likelihood	ratio	
positive	is	2.0).	

The	corresponding	likelihood	ratio	for	a	negative	test	is	the	ratio	of	the	
false-negative	rate	to	the	true-negative	rate	[or	(1	–	
sensitivity)/specificity].	Lower	likelihood	ratio	negative	values	more	
substantially	lower	the	posttest	likelihood	of	disease.	A	very	low	
likelihood	ratio	negative	(falling	below	0.10)	usually	implies	high	
sensitivity,	so	a	negative	high	sensitivity	test	helps	“rule	out”	disease.	
The	hypothetical	test	considered	above	with	a	sensitivity	of	0.9	and	a	
specificity	of	0.9	would	have	a	likelihood	ratio	for	a	negative	test	result	
of	(1	–	0.9)/0.9,	or	0.11,	meaning	that	a	negative	result	is	about	one-
tenth	as	likely	in	patients	with	disease	than	in	those	without	disease	(or	
about	ten	times	more	likely	in	those	without	disease	than	in	those	with	
disease).	

Applications	to	Diagnostic	Testing	in	CAD	
Consider	two	tests	commonly	used	in	the	diagnosis	of	CAD:	an	exercise	
treadmill	and	an	exercise	single-photon	emission	CT	(SPECT)	
myocardial	perfusion	imaging	test	(Chap.	236).	Meta-analysis	has	shown	
that	a	positive	treadmill	ST-segment	response	has	an	average	sensitivity	
of	60%	and	an	average	specificity	of	75%,	yielding	a	likelihood	ratio	
positive	of	2.4	[0.60/(1	–	0.75)]	(consistent	with	modest	discriminatory	
ability	because	it	falls	between	2-5).	For	a	41-year	old	man	with	
nonanginal	pain	and	a	10%	pretest	probability	of	CAD,	the	posttest	
probability	of	disease	after	a	positive	result	rises	to	only	about	30%.	For	
a	60-year	old	woman	with	typical	angina	and	a	pretest	probability	of	
CAD	of	80%,	a	positive	test	result	raises	the	posttest	probability	of	
disease	to	about	95%.	
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In	contrast,	exercise	SPECT	myocardial	perfusion	test	is	more	accurate	
for	diagnosis	of	CAD.	For	simplicity,	assume	that	the	finding	of	a	
reversible	exercise-induced	perfusion	defect	has	both	a	sensitivity	and	a	
specificity	of	90%	(a	bit	higher	than	reported),	yielding	a	likelihood	ratio	
for	a	positive	test	of	9.0	[0.90/(1	–	0.90)]	(consistent	with	intermediate	
discriminatory	ability	because	it	falls	between	5-10).	For	the	same	10%	
pretest	probability	patient,	a	positive	test	raises	the	probability	of	CAD	
to	50%	(Fig.	3-2).	However,	despite	the	differences	in	posttest	
probabilities	between	these	two	tests	(30%	versus	50%),	the	more	
accurate	test	may	not	improve	diagnostic	likelihood	enough	to	change	
patient	management	(e.g.,	decision	to	refer	to	cardiac	catheterization)	
because	the	more	accurate	test	has	only	moved	the	physician	from	being	
fairly	certain	that	the	patient	did	not	have	CAD	to	a	50:50	chance	of	
disease.	In	a	patient	with	a	pretest	probability	of	80%,	exercise	SPECT	
test	raises	the	posttest	probability	to	97%	(compared	with	95%	for	the	
exercise	treadmill).	Again,	the	more	accurate	test	does	not	provide	
enough	improvement	in	posttest	confidence	to	alter	management,	and	
neither	test	has	improved	much	on	what	was	known	from	clinical	data	
alone.	

In	general,	positive	results	with	an	accurate	test	(e.g.,	likelihood	ratio	
positive	10)	when	the	pretest	probability	is	low	(e.g.,	20%)	do	not	move	
the	posttest	probability	to	a	range	high	enough	to	rule	in	disease	(e.g.,	
80%).	In	screening	situations,	pretest	probabilities	are	often	particularly	
low	because	patients	are	asymptomatic.	In	such	cases,	specificity	
becomes	particularly	important.	For	example,	in	screening	first-time	
female	blood	donors	without	risk	factors	for	HIV,	a	positive	test	raised	
the	likelihood	of	HIV	to	only	67%	despite	a	specificity	of	99.995%	
because	the	prevalence	was	0.01%.	Conversely,	with	a	high	pretest	
probability,	a	negative	test	may	not	rule	out	disease	adequately	if	it	is	
not	sufficiently	sensitive.	Thus,	the	largest	change	in	diagnostic	
likelihood	following	a	test	result	occurs	when	the	clinician	is	most	
uncertain	(i.e.,	pretest	probability	between	30%	and	70%).	For	example,	
if	a	patient	has	a	pretest	probability	for	CAD	of	50%,	a	positive	exercise		

	

	 	 treadmill	test	will	move	the	posttest	probability	to	80%	and	a	positive	
exercise	SPECT	perfusion	test	will	move	it	to	90%	(Fig.	3-2).As	
presented	above,	Bayes’	rule	employs	a	number	of	important	
simplifications	that	should	be	considered.	First,	few	tests	provide	only	
“positive”	or	“negative”	results.	Many	tests	have	multi-dimensional	
outcomes	(e.g.,	extent	of	ST-segment	depression,	exercise	duration	and	
exercise-induced	symptoms	with	exercise	testing).	Although	Bayes’	
theorem	can	be	adapted	to	this	more	detailed	test	result	format,	it	is	
computationally	more	complex	to	do	so.	Similarly,	when	multiple	
sequential	tests	are	performed,	the	posttest	probability	may	be	used	as	
the	pretest	probability	to	interpret	the	second	test.	However,	this	
simplification	assumes	conditional	independence—that	is,	that	the	
results	of	the	first	test	do	not	affect	the	likelihood	of	the	second	test	
result—and	this	is	often	not	true.	

Finally,	many	texts	assert	that	sensitivity	and	specificity	are	prevalence-
independent	parameters	of	test	accuracy.	This	statistically	useful	
assumption,	however,	is	clinically	simplistic.	A	treadmill	exercise	test,	
for	example,	has	a	sensitivity	of	around	30%	in	a	population	of	patients	
with	1-vessel	CAD,	whereas	its	sensitivity	in	patients	with	severe	3-
vessel	CAD	approaches	80%.	Thus,	the	best	estimate	of	sensitivity	to	use	
in	a	particular	decision	may	vary,	depending	on	the	severity	of	disease	in	
the	local	population.	A	hospitalized,	symptomatic,	or	referral	population	
typically	has	a	higher	prevalence	of	disease	and,	in	particular,	a	higher	
prevalence	of	more	advanced	disease	than	does	an	outpatient	
population.	Consequently,	test	sensitivity	will	likely	be	higher	in	
hospitalized	patients,	and	test	specificity	higher	in	outpatients.	

Statistical	Prediction	Models	
Bayes’	rule,	when	used	as	presented	above,	is	useful	in	studying	
diagnostic	testing	concepts	but	may	prove	too	simplistic	for	use	in	actual	
patient	care	decisions.	Predictions	based	on	multivariable	statistical	
models	can	more	accurately	address	these	more	complex	problems	by	
simultaneously	accounting	for	additional	relevant	patient		
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characteristics.	In	particular,	these	models	explicitly	account	for	
multiple,	even	possibly	overlapping,	pieces	of	patient-specific	
information	and	assign	a	relative	weight	to	each	on	the	basis	of	its	
unique	independent	contribution	to	the	prediction	in	question.	For	
example,	a	logistic	regression	model	to	predict	the	probability	of	CAD	
ideally	considers	all	the	relevant	independent	factors	from	the	clinical	
examination	and	diagnostic	testing	and	their	relative	importance	instead	
of	the	limited	data	that	clinicians	can	manage	in	their	heads	or	with	
Bayes’	rule.	However,	despite	this	strength,	prediction	models	are	
usually	too	complex	computationally	to	use	without	a	calculator	or	
computer.	Guideline	driven	treatment	recommendations	based	on	
statistical	prediction	models	available	online,	e.g.,	the	ACC/AHA	risk	
calculator	for	primary	prevention	with	statins	and	the	CHA2DS2-VASC	
calculator	for	anticoagulation	for	atrial	fibrillation	have	generated	more	
widespread	usage.	Whether	the	adoption	of	electronic	health	records	
will	promote	more	use	of	predictive	models	in	clinical	practice	and	
increase	their	impact	on	clinical	encounters	and	outcomes	remains	
unclear.	

One	reason	for	limited	clinical	use	is	that,	to	date,	only	a	handful	of	
prediction	models	have	been	validated	properly	(for	example,	Wells’	
criteria	for	pulmonary	embolism,	see	Table	3-2).	The	importance	of	
independent	validation	in	a	population	separate	from	the	one	used	to	
develop	the	model	cannot	be	overstated.	An	unvalidated	prediction	
model	should	be	viewed	with	the	skepticism	appropriate	for	any	new	
drug	or	medical	device	that	has	not	had	rigorous	clinical	trial	testing.	

When	statistical	survival	models	in	cancer	and	heart	disease	have	been	
compared	directly	with	clinicians’	predictions,	the	survival	models	have	
been	found	to	be	more	consistent,	as	would	be	expected	but	not	always	
more	accurate.	On	the	other	hand,	comparison	of	clinicians	with		

	

	 	 websites	and	apps	that	generate	lists	of	possible	diagnoses	to	help	
patients	with	self-diagnosis	found	that	physicians	outperformed	the	
currently	available	programs.	For	students	and	less-experienced	
clinicians,	the	biggest	value	of	diagnostic	decision	support	may	be	in	
extending	diagnostic	possibilities	and	triggering	“rational	override”	but	
their	impact	on	knowledge,	information-seeking,	and	problem-solving	
needs	additional	research.	
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Decision	Support	Tools	
Decision	Support	Systems	
Over	the	last	40	years,	many	attempts	have	been	made	to	develop	
computer	systems	to	aid	clinical	decision-making	and	patient	
management.	Conceptually,	computers	offer	several	levels	of	potentially	
useful	support	for	clinicians.		At	the	most	basic	level,	they	provide	ready	
access	to	vast	reservoirs	of	information,	which	may,	however,	be	quite	
difficult	to	sort	through	to	find	what	is	needed.		At	higher	levels,	
computers	can	support	care	management	decisions	by	making	accurate	
predictions	of	outcome,	or	can	simulate	the	whole	decision	process,	and	
provide	algorithmic	guidance.	Computer-based	predictions	using	
Bayesian	or	statistical	regression	models	inform	a	clinical	decision	but	
do	not	actually	reach	a	“conclusion”	or	“recommendation.”	Machine	
learning	methods	are	being	applied	to	pattern	recognition	tasks	such	as	
the	examination	of	skin	lesions	and	the	interpretation	of	x-rays.	Artificial	
intelligence	systems	attempt	to	simulate	or	replace	human	reasoning	
with	a	computer-based	analogue.	To	date,	such	approaches	have	
achieved	only	limited	success.	Reminder	or	protocol-directed	systems	
do	not	make	predictions	but	use	existing	algorithms,	such	as	guidelines	
or	appropriate	utilization	criteria,	to	direct	clinical	practice.	In	general,	
however,	decision	support	systems	have	had	little	impact	on	practice.	
Reminder	systems	built	into	electronic	health	records	have	shown	the	
most	promise,	particularly	in	correcting	drug	dosing	and	promoting	
adherence	to	guidelines.	Checklists	may	also	help	avoid	or	reduce	errors.	

Decision	Analysis	
Compared	with	the	decision	support	methods	above,	decision	analysis		

	 	 represents	a	normative	prescriptive	approach	to	decision	making	in	the	
face	of	uncertainty.	Its	principal	application	is	in	complex	decisions.	For	
example,	public	health	policy	decisions	often	involve	trade-offs	in	length	
versus	quality	of	life,	benefits	versus	resource	use,	population	versus	
individual	health,	and	uncertainty	regarding	efficacy,	effectiveness,	and	
adverse	events	as	well	as	values	or	preferences	regarding	mortality	and	
morbidity	outcomes.			

One	recent	analysis	using	this	approach	involved	the	optimal	screening	
strategy	for	breast	cancer,	which	has	remained	controversial,	in	part	
because	a	randomized	controlled	trial	to	determine	when	to	begin	
screening	and	how	often	to	repeat	screening	mammography	is	
impractical.	In	2016,	the	National	Cancer	Institute	sponsored	Cancer	
Intervention	and	Surveillance	Network	(CISNET)	examined	8	strategies	
differing	by	whether	to	initiate	mammography	screening	at	age	40,	45,	
or	50	years	and	whether	to	screen	annually,	biennially,	or	annually	for	
women	in	their	40s	and	biennially	thereafter	(hybrid).	The	6	simulation	
models	found	biennial	strategies	to	be	the	most	efficient	for	average-risk	
women.	Biennial	screening	for	1000	women	from	age	50	to	74	years	
versus	no	screening	avoided	7	breast	cancer	deaths.	Screening	annually	
from	age	40	to	74	years	avoided	3	additional	deaths	but	required	20,000	
additional	mammograms	and	yielded	1988	more	false-positive	results.	
Factors	that	influenced	the	results	included	patients	with	a	2-4	fold	
higher	risk	for	developing	breast	cancer	in	whom	annual	screening	from	
40	to	74	yielded	similar	benefits	as	biennial	screening	from	age	50	to	74.	
For	average-risk	patients	with	moderate	or	severe	co-morbidities,	
screening	could	be	stopped	earlier	at	ages	66	to	68	years.	

This	analysis	involved	6	models	that	reproduced	epidemiologic	trends	
and	a	screening	trial	result,	accounted	for	digital	technology	and	
treatments	advances,	and	considered	quality	of	life,	risk	factors,	breast	
density,	and	comorbidity.	It	provided	novel	insights	into	a	public	health	
problem	in	the	absence	of	a	randomized	clinical	trial	and	helped	weigh	
the	pros	and	cons	of	such	a	health	policy	recommendation.	Although	
such	models	have	been	developed	for	selected	clinical	problems,	their		
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benefit	and	application	to	individual	real-time	clinical	management	has	
yet	to	be	demonstrated.	

Diagnosis	as	An	Element	of	Care	
High	quality	medical	care	begins	with	accurate	diagnosis.	The	incidence	
of	diagnostic	errors	has	been	estimated	by	a	variety	of	methods	
including	postmortem	exams,	medical	record	reviews,	and	medical	
malpractice	claims,	with	each	yielding	complementary	but	different	
estimates	of	this	quality	of	care	patient-safety	problem.	In	the	past,	
diagnostic	errors	tended	to	be	viewed	as	a	failure	of	individual	
clinicians.	The	modern	view	is	that	they	are	mostly	system	of	care	
deficiencies.	Current	estimates	suggest	that	nearly	everyone	will	
experience	at	least	one	diagnostic	error	in	their	lifetime,	leading	to	
mortality,	morbidity,	unnecessary	tests	and	procedures,	costs	and	
anxiety.	

Solutions	to	the	“diagnostic	errors	as	a	system	of	care	problem”	have	
focused	on	system-level	approaches,	such	as	decision	support	and	other	
tools	integrated	into	electronic	medical	records.	The	use	of	checklists	
has	been	proposed	as	a	means	of	reducing	some	of	the	cognitive	errors	
discussed	earlier	in	the	chapter,	such	as	premature	closure.	While	
checklists	have	been	shown	useful	in	certain	medical	contexts,	such	as	
the	ORs	and	ICUs,	their	value	in	preventing	diagnostic	errors	that	lead	to	
patient	adverse	events	remains	to	be	shown.	

Evidence-Based	Medicine	
Clinical	medicine	is	defined	traditionally	as	a	practice	combining	medical	
knowledge	(including	scientific	evidence),	intuition,	and	judgment	in	the	
care	of	patients	(Chap.	1).	Evidence-based	medicine	(EBM)	updates	this	
construct	by	placing	much	greater	emphasis	on	the	processes	by	which	
clinicians	gain	knowledge	of	the	most	up-to-date		

	 	 and	relevant	clinical	research	to	determine	for	themselves	whether	
medical	interventions	alter	the	disease	course	and	improve	the	length	or	
quality	of	life.	The	meaning	of	practicing	EBM	becomes	clearer	through	
an	examination	of	its	four	key	steps:	

1. Formulating	the	management	question	to	be	answered	
2. Searching	the	literature	and	online	databases	for	applicable	

research	data	
3. Appraising	the	evidence	gathered	with	regard	to	its	validity	and	

relevance	
4. Integrating	this	appraisal	with	knowledge	about	the	unique	

aspects	of	the	patient	(including	the	patient’s	preferences	about	
the	possible	outcomes)	

The	process	of	searching	the	world’s	research	literature	and	appraising	
the	quality	and	relevance	of	studies	can	be	time-consuming	and	requires	
skills	and	training	that	most	clinicians	do	not	possess.	Thus,	identifying	
recent	systematic	overviews	of	the	problem	in	question	(Table	3-3)	may	
offer	the	best	starting	point	for	most	EBM	searches.	However,	the	
medical	literature	is	now	being	flooded	with	systematic	reviews	of	
varying	quality	and	clinical	utility.	Therefore,	systematic	reviews	should	
be	used	in	conjunction	with	selective	reading	of	some	of	the	best	
empirical	studies.	

Generally,	the	EBM	tools	listed	in	Table	3-3	provide	access	to	research	
information	in	one	of	two	forms.	The	first,	primary	research	reports,	is	
the	original	peer-reviewed	research	work	that	is	published	in	medical	
journals	and	accessible	through	MEDLINE	in	abstract	form.	However,	
without	training	in	using	MEDLINE,	locating	reports	quickly	and	
efficiently	that	are	on	point	in	a	sea	of	irrelevant	or	unhelpful	citations	
remains	difficult,	and	important	studies	are	easily	missed.	Systematic	
reviews,	the	second	form,	are	regarded	by	some	as	the	highest	level	of	
evidence	in	the	hierarchy	because	they	are	intended	to	comprehensively	
summarize	the	available	evidence	on	a	particular	topic.	To	avoid	the	
potential	biases	found	in	review	articles,	predefined	reproducible		
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explicit	search	strategies	and	inclusion	and	exclusion	criteria	seek	to	
find	all	of	the	relevant	scientific	research	and	grade	its	quality.	The	
prototype	for	this	kind	of	resource	is	the	Cochrane	Database	of	
Systematic	Reviews.	When	appropriate,	a	meta-analysis	is	used	to	
quantitatively	summarize	the	systematic	review	findings.	The	next	two	
sections	explicate	the	major	types	of	clinical	research	reports	available	
in	the	literature	and	the	process	of	aggregating	those	data	into	meta-
analyses.	

	

	

	 	

Sources	of	Evidence:	Clinical	Trials	and	
Registries	
The	notion	of	learning	from	observation	of	patients	is	as	old	as	medicine	
itself.	Over	the	last	50	years,	physicians’	understanding	of	how	best	to	
turn	raw	observation	into	useful	evidence	has	evolved	considerably.	
Case	reports,	personal	anecdotal	experience,	and	small	single-center	
case	series	are	now	recognized	as	having	severe	limitations	in	validity	
and	generalizability,	and	although	they	may	generate	hypotheses	or	be	
the	first	reports	of	adverse	events	or	therapeutic	benefit,	they	have	no	
role	in	formulating	modern	standards	of	practice.	The	major	tools	used	
to	develop	reliable	evidence	consist	of	the	randomized	clinical	trial	and	
the	large	observational	registry.	A	registry	or	database	typically	is	
focused	on	a	disease	or	syndrome	(e.g.,	different	types	of	cancer,	acute	
or	chronic	CAD,	pacemaker	capture	or	chronic	heart	failure),	a	clinical	
procedure	(e.g.,	bone	marrow	transplantation,	coronary	
revascularization),	or	an	administrative	process	(e.g.,	claims	data	used	
for	billing	and	reimbursement).	

By	definition,	in	observational	data,	the	investigator	does	not	control	
patient	care.	Carefully	collected	prospective	observational	data,	
however,	can	at	times	achieve	a	level	of	evidence	quality	approaching	
that	of	major	clinical	trial	data.	At	the	other	end	of	the	spectrum,	data	
collected	retrospectively	(e.g.,	chart	review)	are	limited	in	form	and	
content	to	what	previous	observers	recorded	and	may	not	include	the	
specific	research	data	being	sought	(e.g.,	claims	data)	Advantages	of	
observational	data	include	the	inclusion	of	a	broader	population	as	
encountered	in	practice	than	is	typically	represented	in	clinical	trials	
because	of	their	restrictive	inclusion	and	exclusion	criteria.	In	addition,	
observational	data	provide	primary	evidence	for	research	questions	
when	a	randomized	trial	cannot	be	performed.	For	example,	it	would	be	
difficult	to	randomize	patients	to	test	diagnostic	or	therapeutic		
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strategies	that	are	unproven	but	widely	accepted	in	practice,	and	it	
would	be	unethical	to	randomize	based	on	sex,	racial/ethnic	group,	
socioeconomic	status,	or	country	of	residence	or	to	randomize	patients	
to	a	potentially	harmful	intervention,	such	as	smoking	or	deliberately	
overeating	to	develop	obesity.	

A	well-done	prospective	observational	study	of	a	particular	
management	strategy	differs	from	a	well-done	randomized	clinical	trial	
most	importantly	by	its	lack	of	protection	from	treatment	selection	bias.	
The	use	of	observational	data	to	compare	diagnostic	or	therapeutic	
strategies	assumes	that	sufficient	uncertainty	and	heterogeneity	exists	
in	clinical	practice	to	ensure	that	similar	patients	will	be	managed	
differently	by	diverse	physicians.	In	short,	the	analysis	assumes	that	a	
sufficient	element	of	randomness	(in	the	sense	of	disorder	rather	than	in	
the	formal	statistical	sense)	exists	in	clinical	management.	In	such	cases,	
statistical	models	attempt	to	adjust	for	important	imbalances	to	“level	
the	playing	field”	so	that	a	fair	comparison	among	treatment	options	can	
be	made.	When	management	is	clearly	not	random	(e.g.,	all	eligible	left	
main	coronary	artery	disease	patients	are	referred	for	coronary	bypass	
surgery),	the	problem	may	be	too	confounded	(biased)	for	statistical	
correction,	and	observational	data	may	not	provide	reliable	evidence.	

In	general,	the	use	of	concurrent	controls	is	vastly	preferable	to	that	of	
historical	controls.	For	example,	comparison	of	current	surgical	
management	of	left	main	CAD	with	medically	treated	patients	with	left	
main	CAD	during	the	1970s	(the	last	time	these	patients	were	routinely	
treated	with	medicine	alone)	would	be	extremely	misleading	because	
“medical	therapy”	has	substantially	improved	in	the	interim.	

Randomized	controlled	clinical	trials	include	the	careful	prospective	
design	features	of	the	best	observational	data	studies	but	also	include	
the	use	of	random	allocation	of	treatment.	This	design	provides	the	best	
protection	against	measured	and	unmeasured	confounding	due	to	
treatment	selection	bias	(a	major	aspect	of	internal	validity).	However,	
the	randomized	trial	may	not	have	good	external	validity	

	 	 (generalizability)	if	the	process	of	recruitment	into	the	trial	resulted	in	
the	exclusion	of	many	potentially	eligible	subjects	or	if	the	nominal	
eligibility	for	the	trial	describe	a	very	heterogeneous	population.	

Consumers	of	medical	evidence	need	to	be	aware	that	randomized	trials	
vary	widely	in	their	quality	and	applicability	to	practice.	The	process	of	
designing	such	a	trial	often	involves	many	compromises.	For	example,	
trials	designed	to	gain	U.S.	Food	and	Drug	Administration	(FDA)	
approval	for	an	investigational	drug	or	device	must	fulfill	regulatory	
requirements	(such	as	the	use	of	a	placebo	control)	that	may	result	in	a	
trial	population	and	design	that	differs	substantially	from	what	
practicing	clinicians	would	find	most	useful.	

Meta-Analysis	
The	Greek	prefix	meta	signifies	something	at	a	later	or	higher	stage	of	
development.	Meta-analysis	is	research	that	combines	and	summarizes	
the	available	evidence	quantitatively.	Although	it	is	used	to	examine	
nonrandomized	studies,	meta-analysis	is	most	useful	for	summarizing	
all	randomized	trials	examining	a	particular	therapy.	Ideally,	
unpublished	trials	should	be	identified	and	included	to	avoid	publication	
bias	(i.e.,	missing	“negative”	trials	which	may	not	be	published).	
Furthermore,	the	best	meta-analyses	obtain	and	analyze	individual	
patient-level	data	from	all	trials	rather	than	using	only	the	summary	
data	from	published	reports.	Nonetheless,	not	all	published	meta-
analyses	yield	reliable	evidence	for	a	particular	problem,	so	their	
methodology	should	be	scrutinized	carefully	to	ensure	proper	study	
design	and	analysis.	The	results	of	a	well-done	meta-analysis	are	likely	
to	be	most	persuasive	if	they	include	at	least	several	large-scale,	
properly	performed	randomized	trials.	Meta-analysis	can	especially	help	
detect	benefits	when	individual	trials	are	inadequately	powered	(e.g.,	
the	benefits	of	streptokinase	thrombolytic	therapy	in	acute	MI	
demonstrated	by	ISIS-2	in	1988	were	evident	by	the	early	1970s	
through	meta-analysis).	However,	in	cases	in	which	the	available	trials	
are	small	or	poorly	done,	meta-analysis	should	not	be	viewed	as	a	
remedy	for	deficiencies	in	primary	trial	data	or	trial	design.	
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Meta-analyses	typically	focus	on	summary	measures	of	relative	
treatment	benefit,	such	as	odds	ratios	or	relative	risks.	Clinicians	also	
should	examine	what	absolute	risk	reduction	(ARR)	can	be	expected	
from	the	therapy.	A	summary	metric	of	absolute	treatment	benefit	is	the	
number	needed	to	treat	(NNT)	to	prevent	one	adverse	outcome	event	
(e.g.,	death,	stroke).	NNT	is	simply	1/ARR.	For	example,	if	a	hypothetical	
therapy	reduced	mortality	rates	over	a	5-year	follow-up	by	33%	(the	
relative	treatment	benefit)	from	12%	(control	arm)	to	8%	(treatment	
arm),	the	absolute	risk	reduction	would	be	12%	–	8%	=	4%	and	the	NNT	
would	be	1/.04,	or	25.	Thus,	it	would	be	necessary	to	treat	25	patients	
for	5	years	to	prevent	1	death.	If	the	hypothetical	treatment	was	applied	
to	a	lower-risk	population,	say,	with	a	6%	5-year	mortality,	the	33%	
relative	treatment	benefit	would	reduce	absolute	mortality	by	2%	(from	
6	to	4%),	and	the	NNT	for	the	same	therapy	in	this	lower-risk	group	of	
patients	would	be	50.	Although	not	always	made	explicit,	comparisons	of	
NNT	estimates	from	different	studies	should	account	for	the	duration	of	
follow-up	used	to	create	each	estimate.	In	addition,	the	NNT	concept	
assumes	a	homogeneity	in	response	to	treatment	that	may	not	be	
accurate.	The	NNT	is	simply	another	way	of	summarizing	the	absolute	
treatment	difference	and	does	not	provide	any	unique	information.		

Clinical	Practice	Guidelines	
According	to	the	1990	Institute	of	Medicine	definition,	clinical	practice	
guidelines	are	“systematically	developed	statements	to	assist	
practitioner	and	patient	decisions	about	appropriate	health	care	for	
specific	clinical	circumstances.”	This	definition	emphasizes	several	
crucial	features	of	modern	guideline	development.	First,	guidelines	are	
created	by	using	the	tools	of	EBM.	In	particular,	the	core	of	the	
development	process	is	a	systematic	literature	search	followed	by	a	
review	of	the	relevant	peer-reviewed	literature.	Second,	guidelines	
usually	are	focused	on	a	clinical	disorder	(e.g.,	diabetes	mellitus,	stable	
angina	pectoris)	or	a	health	care	intervention	(e.g.,	cancer	screening).	
Third,	the	primary	objective	of	guidelines	is	to	improve	the	quality	of		

	 	 medical	care	by	identifying	care	practices	which	should	be	routinely	
implemented,	based	on	high	quality	evidence	and	high	benefit	to	harm	
ratios	for	the	interventions.	Guidelines	are	intended	to	“assist”	decision-
making,	not	to	define	explicitly	what	decisions	should	be	made	in	a	
particular	situation,	in	part	because	guideline	level	evidence	alone	is	
never	sufficient	for	clinical	decision-making	(e.g.,	deciding	whether	to	
intubate	and	administer	antibiotics	for	pneumonia	in	a	terminally	ill	
individual,	in	an	individual	with	dementia,	or	in	an	otherwise	healthy	
30-year-old	mother).	

Guidelines	are	narrative	documents	constructed	by	expert	panels	whose	
composition	often	is	determined	by	interested	professional	
organizations.	These	panels	vary	in	expertise	and	in	the	degree	to	which	
they	represent	all	relevant	stakeholders.	The	guideline	documents	
consist	of	a	series	of	specific	management	recommendations,	a	summary	
indication	of	the	quantity	and	quality	of	evidence	supporting	each	
recommendation,	an	assessment	of	the	benefit	to	harm	ratio	for	the	
recommendation,	and	a	narrative	discussion	of	the	recommendations.	
Many	recommendations	simply	reflect	the	expert	consensus	of	the	
guideline	panel	because	literature-based	evidence	is	insufficient	or	
absent.	The	final	step	in	guideline	construction	is	peer	review,	followed	
by	a	final	revision	in	response	to	the	critiques	provided.	To	improve	the	
reliability	and	trustworthiness	of	guidelines,	the	National	Academy	of	
Medicine	(formerly	Institute	of	Medicine)	has	made	methodological	
recommendations	for	guideline	development.		

Guidelines	are	closely	tied	to	the	process	of	quality	improvement	in	
medicine	through	their	identification	of	evidence-based	best	practices.	
Such	practices	can	be	used	as	quality	indicators.	Examples	include	the	
proportion	of	acute	MI	patients	who	receive	aspirin	upon	admission	to	a	
hospital	and	the	proportion	of	heart	failure	patients	with	a	depressed	
ejection	fraction	treated	with	an	ACE	inhibitor.		
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Conclusions	
In	this	era	of	EBM,	it	is	tempting	to	think	that	all	the	difficult	decisions	
practitioners	face	have	been	or	soon	will	be	solved	and	digested	into	
practice	guidelines	and	computerized	reminders.	However,	EBM	
provides	practitioners	with	an	ideal	rather	than	a	finished	set	of	tools	
with	which	to	manage	patients.	Moreover,	even	with	such	evidence,	it	is	
always	worth	remembering	that	the	response	to	therapy	of	the	
“average”	patient	represented	by	the	summary	clinical	trial	outcomes	
may	not	be	what	can	be	expected	for	the	specific	patient	sitting	in	front	
of	a	provider	in	the	clinic	or	hospital.	In	addition,	meta-analyses	cannot	
generate	evidence	when	there	are	no	adequate	randomized	trials,	and	
most	of	what	clinicians	confront	in	practice	will	never	be	thoroughly	
tested	in	a	randomized	trial.	For	the	foreseeable	future,	excellent	clinical	
reasoning	skills	and	experience	supplemented	by	well-designed	
quantitative	tools	and	a	keen	appreciation	for	the	role	of	individual	
patient	preferences	in	their	health	care	will	continue	to	be	of	paramount	
importance	in	the	practice	of	clinical	medicine.	
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